177 research outputs found

    Analysis of temporal gait features extracted from accelerometer-based signals during ambulatory walking in Parkinson’s disease

    Full text link
    Objective: To perform a proof-of-concept study showing the utility of versatile algorithms aimed at objectively quantifying the duration of refined gait features during ambulatory walking in a patient with Parkinson’s disease (PD) in ON and OFF medication states as compared with an age-matched control subject

    Effects of α-synuclein levels on cerebral synaptic function: Validation of a novel PET radioligand for the early diagnosis of Parkinson’s disease

    Full text link
    Background In Parkinson’s disease, converging evidence supports a pathogenic role for excessive α–synuclein accumulation in synaptic terminals that may propagate back to the soma of vulnerable nerve cells such as neurons in the substantia nigra pars compacta. The resulting loss of dopaminergic terminals in the striatum can be demonstrated in vivo using 18F-Dopa-PET (positron emission tomography). However, there’s currently no validated biomarker of the progressive synaptic dysfunction in other vulnerable areas such as the cerebral cortex. Goal In this longitudinal study, we will test the hypothesis that the loss of synaptic terminals in a mouse model of excessive α–synuclein accumulation can be demonstrated in vivo before the occurrence of behavioural disturbances using 18F-UCB-H, a new PET biomarker developed at CRC. We will also test if this new imaging modality is sensitive enough to study the effect of a disease modifying therapy such as chronic physical exercise. Methods We will use microPET for the in vivo quantification of 18F-UCB-H brain uptake in 16 wild type animals and 16 transgenic (Tg) mice overexpressing human α–syn under the mThy1 promotor every 2 months. Data will be validated against post-mortem analyses after the last PET study. Predictions We predict decreased tracer uptake over time in the basal ganglia and cerebral cortex in Tg mice as compared with WT animals. Also, we predict a relationship between 18F-UCB-H uptake levels in basal ganglia and cerebral cortex and progressive alterations in both motor and cognitive functions, respectively. Further, we also expect that chronic exercise will slow down both motor and cognitive disturbances, as well as the rate of 18F-UCB-H brain uptake decreases. Conclusion If 18F-UCB-H PET proves to be a valid biomarker for the early detection of α–synuclein accumulation in the pre-clinical model of PD, the methods will tested on human clinical populations

    Mapping track density changes in nigrostriatal and extranigral pathways in Parkinson's disease

    Get PDF
    peer reviewedHighlights First whole-brain probabilistic tractography study in Parkinson's disease High quality diffusion-weighted images (120 gradient directions, b = 2500 s/mm2) Voxel-based group analysis comparing early-stage patients and controls Abnormal reconstructed track density in the nigrostriatal pathway and brainstem Track density also increased in limbic and cognitive circuits

    Endocarditis after Use of Tongue Scraper

    Get PDF
    We explored the neural substrate of anosognosia for cognitive impairment in Alzheimer's disease (AD). Two hundred nine patients with mild to moderate dementia and their caregivers assessed patients' cognitive impairment by answering a structured questionnaire. Subjects rated 13 cognitive domains as not impaired or associated with mild, moderate, severe, or very severe difficulties, and a sum score was calculated. Two measures of anosognosia were derived. A patient's self assessment, unconfounded by objective measurements of cognitive deficits such as dementia severity and episodic memory impairment, provided an estimate of impaired self-evaluative judgment about cognition in AD. Impaired self-evaluation was related to a decrease in brain metabolism measured with 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in orbital prefrontal cortex and in medial temporal structures. In a cognitive model of anosognosia, medial temporal dysfunction might impair a comparison mechanism between current information on cognition and personal knowledge. Hypoactivity in orbitofrontal cortex may not allow AD patients to update the qualitative judgment associated with their impaired cognitive abilities. Caregivers perceived greater cognitive impairments than patients did. The discrepancy score between caregiver's and patient's evaluations, an other measure of anosognosia, was negatively related to metabolic activity located in the temporoparietal junction, consistent with an impairment of self-referential processes and perspective taking in AD

    Case report:Thirty-year progression of an EMPF1 encephalopathy due to defective mitochondrial and peroxisomal fission caused by a novel de novo heterozygous DNM1L variant

    Get PDF
    Mutations in DNM1L (DRP1), which encode a key player of mitochondrial and peroxisomal fission, have been reported in patients with the variable phenotypic spectrum, ranging from non-syndromic optic atrophy to lethal infantile encephalopathy. Here, we report a case of an adult female patient presenting with a complex neurological phenotype that associates axonal sensory neuropathy, spasticity, optic atrophy, dysarthria, dysphasia, dystonia, and ataxia, worsening with aging. Whole-exome sequencing revealed a heterozygous de novo variant in the GTPase domain of DNM1L [NM_001278464.1: c.176C>A p.(Thr59Asn)] making her the oldest patient suffering from encephalopathy due to defective mitochondrial and peroxisomal fission-1. In silico analysis suggested a protein destabilization effect of the variant Thr59Asn. Unexpectedly, Western blotting disclosed profound decrease of DNM1L expression, probably related to the degradation of DNM1L complexes. A detailed description of mitochondrial and peroxisomal anomalies in transmission electron and 3D fluorescence microscopy studies confirmed the exceptional phenotype of this patient

    Imagerie multimodale dans la maladie de Parkinson: PET FDOPA, IRM quantitative sensible au fer et à la neuromélanine

    Full text link
    peer reviewedParkinson’s disease is a neurodegenerative synucleinopathy characterized by the degeneration of neuromelanin-containing dopaminergic neurons and deposition of iron in the substantia nigra (SN). How regional neuromelanin (NM) loss and iron accumulation within specific areas of SN relates to nigro-striatal dysfunction needs to be clarified. We measured dopaminergic function in pre- and post-commissural putamen by [18F]DOPA PET in twenty-three Parkinson’s disease (PD) patients and 23 healthy control (HC) participants in whom NM content and iron load was assessed in medial and lateral SN, respectively by neuromelanin-sensitive and quantitative R2* MRI. Data analysis consisted of voxelwise regressions testing the group effect and its interaction with NM or iron signals. In PD patients, R2* was selectively increased in left lateral SN as compared to healthy participants, suggesting a local accumulation of iron in Parkinson’s disease. By contrast, NM signal differed between PD and HC, without specific regional specificity within SN. Dopaminergic function in posterior putamen decreased as R2* increased in lateral SN, indicating that dopaminergic function impairment progresses with iron accumulation in the SN. Dopaminergic function was also positively correlated with NM signal in lateral SN, indicating that dopaminergic function impairment progresses with depigmentation in the SN. A complex relationship was detected between R2* in the lateral SN and NM signal in the medial substantia nigra. In conclusion, multimodal imaging reveals regionally-specific relationships between iron accumulation and depigmentation within the SN of Parkinson’s disease and provides in vivo insights in its neuropathology.Parkinson's disease multimodal imagin
    • …
    corecore